Reg. No.:			, 5									.=
-----------	--	--	-----	--	--	--	--	--	--	--	--	----

Question Paper Code: 31265

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2019.

Fourth Semester

Electronics and Communication Engineering

MA 2261 - PROBABILITY AND RANDOM PROCESSES

(Common to Biomedical Engineering)

(Regulation 2008)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. The moment generating function of a random variable X is given by $M(t) = e^{3(e^t-1)}$. What is P[X=0]?
- 2. An experiment succeeds twice as often as it fails. Find the chance that in the next 4 trials, there shall be at least one success.
- 3. Find the marginal density functions of X and Y if $f(x,y) = \begin{cases} \frac{6}{5}(x+y^2), & 0 \le x \le 1, \\ 0 & otherwise \end{cases}$
- 4. Find the acute angle between the two lines of regression, assuming the two lines of regression.
- 5. Define wide sense stationary process.
- 6. Show that a binomial process is Markov.
- 7. Define power spectral density function.
- 8. State Wiener-Khinchine theorem.
- 9. Define a linear system with random output.
- 10. State any two properties of cross power density spectrum.

- If the probability density of X is give by $f(x) = \begin{cases} 2(1-x) & \text{for } 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}$ 11. (a) find its r^{th} moment. Hence, evaluate $E[(2X+1)^2]$.
 - Find MGF corresponding to the distribution $f(\theta) = \begin{cases} \frac{1}{2}e^{-\theta/2}, \theta > 0 \\ 0, \text{ otherwise} \end{cases}$ (ii) (6)

and hence find its mean and variance.

Show that for the Probability function (iii)

$$p(x) = P(X - x) = \begin{cases} \frac{1}{x(x+1)}, & x = 1, 2, 3... \\ 0, & otherwise \end{cases} E(X) \text{ does not exist.}$$
 (4)

- Assume that the reduction of a person's oxygen consumption during (b) (i) a period of Transcendental Meditation (T.M) is a continuous random variable X normally distributed with mean 37.6 cc/mm and S.D 4.6 cc/min Determine the probability that during a period of T.M. a person's Oxygen consumption will be reduced by
 - at least 44.5 cc/min (1)
 - (2)utmost 35.0 cc/min
 - anywhere from 30.0 to 40.0 cc/mm. (3)
 - (ii) The random variable X has exponential distribution with

$$f(x) = f(X) = f(x) = \begin{cases} e^{-x}, & 0 < x < \infty \\ 0, & otherwise. \end{cases}$$

Find the density function of the variable given by

Y = 3X + 5(1)

(2)
$$Y = X^2$$
. (8)

- The joint PMF of two random variables X and Y is given by 12. (a) (i) $P_{XY}(x,y) = \begin{cases} K(2x+y), & x=1,2; y=1,2\\ 0, & \text{otherwise} \end{cases}$, where K is constant
 - (1) Find K
 - Find the marginal PMFs of X and Y. (2)

(8)

(8)

(ii) Assume that the random variable S_n is the sum of 48 independent experimental values of the random variable X whose PDF is given by $f_X(x) = \begin{cases} \frac{1}{3}, & 1 \le x \le 4 \\ 0, & \text{otherwise} \end{cases}$. Find the probability that S_n lies in the range $108 \le S_n \le 126$.

Or

- (b) (i) Two random variables X and Y are related as Y = 4X + 9. Find the correlation coefficient between X and Y. (8)
 - (ii) If the density function is defined by $f(x,y) = \frac{y}{(1+x)^4} e^{\frac{-y}{1+x}}, x \ge 0, y \ge 0$

then obtain the regression equation of Y on X for the distribution. (8)

13. (a) (i) If the two RVs A_r and B_r are uncorrelated with zero mean and $E(A_r^2) = E(B_r^2) = \sigma_r^2$, show that the process.

$$x(t) = \sum_{r=1}^{n} (A_r \cos w_r t + B_r \sin w_r t) \text{ is wide-sense stationary.}$$
 (8)

- (ii) If $\{x(t)\}$ is a Gaussian process with $\mu(t) = 10$ and $C(t_1, t_2) = 16 e^{-|t_1 t_2|}$, find the probability that
 - $(1) \quad X(10) \le 8 \text{ and}$

(2)
$$|X(10) - X(6)| \le 4$$
. (8)

Or

- (b) (i) Define Random telegraph signal process and prove that it is widesense stationary. (8)
 - (ii) Prove that sum of two independent Poisson processes is a Poisson process. (8)
- 14. (a) (i) Define spectral density of a stationary random process X(t) Prove that for a real random process X(t) the power spectral density is an even function. (8)
 - (ii) Two random processes X(t) and Y(t) are defined as follows: $X(t) = A\cos(\omega t + \theta) \quad \text{and} \quad Y(t) = B\sin(\omega t + \theta) \quad \text{where} \quad A, B \quad \text{and} \quad w \quad \text{are} \quad \text{constants} \; ; \; \theta \quad \text{is a uniform random variable over} \; (0, 2\pi). \; \text{Find the} \quad \text{cross correlation function of} \; X(t) \; \text{and} \; Y(t).$

Or

- (b) (i) State and prove Wiener-Khintchine theorem. (8)
 - (ii) If the cross power spectral density of X(t) and Y(t) is $S_{XY}(w) = \begin{cases} a + \frac{ibw}{\alpha}; -\alpha < w < \alpha, \alpha > 0 \\ 0, & \text{otherwise} \end{cases}$ where a and b are constants. Find the cross correlation function. (8)
- 15. (a) (i) Prove that if the input to a time-invariant stable linear system is a
 - (ii) A random process X(t) with $R_{XX}(\tau) = e^{-2|\tau|}$ is the input to a linear system whose impulse response is $h(t) = 2e^{-t}$, t > 0. Find the cross correlation coefficient $R_{XY}(\tau)$ between the input process X(t) and output process Y(t).

wide sense process then the output also is a wide sense process.

Or

removed passed student that the fit is

- (b) (i) Let X(t) be a wide sense stationary process which is the input to a linear time invariant system with unit impulse h(t) and output Y(t). Prove that $S_{YY}(w) = |H(w)|^2 S_{XX}(w)$ where H(w) is the Fourier transform of h(t).
 - (ii) Let Y(t) = X(t) + N(t) be a wide sense stationary process where X(t) is the actual signal and N(t) is the zero mean noise process with variance σ_N^2 , and independent of X(t). Find the power spectral density of Y(t).